Interior Estimates for a Class of Reaction-diffusion Systems from L a Priori Estimates

نویسنده

  • Selwyn L. Hollis
چکیده

We obtain interior estimates for a class of semilinear reaction-diffusion systems from L a priori estimates. Our results are applied to a predator-prey model in which the species switch the role of predator and prey on given subsets of their domain of interaction, and a one dimensional flame propagation model. Extensions of earlier results in Morgan [14], [15] follow from the analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

Threshold Effects in the Monetary Policy Reaction Function: Evidence from Central Bank of Iran

Determining how monetary policy makers react to changes in key economic variables has been of major interest to monetary economists. Estimates of monetary policy rules (reaction functions) are a widely used method for doing this. Behavior differs under different policy regimes, as in rule-based systems or chronic inflation. In practice, estimates of instrument rules have been used to descri...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

Weighted Error Estimates of the Continuous Interior Penalty Method for Singularly Perturbed Problems

In this paper we analyze local properties of the Continuous Interior Penalty (CIP) Method for a model convection-dominated singularly perturbed convection-diffusion problem. We show weighted a priori error estimates, where the weight function exponentially decays outside the subdomain of interest. This result shows that locally, the CIP method is comparable to the Streamline Diffusion (SD) or t...

متن کامل

Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease

We analyze a finite volume scheme for nonlocal SIR model, which is a nonlocal reaction-diffusion system modeling an epidemic disease. We establish existence solutions to the finite volume scheme, and show that it converges to a weak solution. The convergence proof is based on deriving series of a priori estimates and using a general L compactness criterion.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998